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A mathematical model for determining the hydrodynamics of a melt and impurity concentration in the process of
growing of a packet of sapphire strips by the Stepanov group method with beveled surfaces of shapers is con-
sidered. The description of the model contains: the Stefan problem, Navier–Stokes equation, diffusion equation,
and Laplace capillary equation. The problems posed were solved numerically by the method of finite elements.

The use of the Stepanov group method considerably increases the productivity of the process of group growth
of crystal strips. At the same time, such a method of growing requires successful tuning of the thermal field in the
thermal zone and an optimal configuration of shapers. Below, on the basis of a mathematical model, a group method
of growing of sapphire strips for shapers with different bevel angles of their operating edges is considered. The work
is a continuation of a previously published one [1], and is mainly devoted to determination of the hydrodynamics of
a melt and impurity concentration in each strip of the packet depending on the bevel angle of the operating surfaces
of shapers. Thus, in addition to the equations given in [1], the statement of the problem is supplemented by a diffusion
equation. In many cases, the position and shape of the front are of importance. Here, a substantial influence can be
exerted by the bevel angle. Therefore, in the work, investigation of the behavior of the crystallization front of grown
strips is also carried out. The presence of radiation heat transfer between the side surfaces of the strips is assumed.

The aim of the finite-element analysis is the determination of the process parameters allowing one to mini-
mize the following factors: 1) the difference in the distributions of temperature in a growing packet of strips to
control the process by changing the heating power; 2) the impurity concentration at the crystallization front near
the side surface.

The problem consists of a number of iteration procedures that ensure a constant growth angle and agreement
between the temperatures of the side surfaces of plates and the densities of radiation fluxes between them.

Statement of the Problem. We will take into consideration the fact that the problem of heat conduction
should be formulated separately for each inner strip and two outer ones. This follows from the difference in heat trans-
fer between the side surfaces of the inner strips and the outer surfaces of the first and last strips and the environment.

The diagram of the crystallization process and selection of a coordinate system are presented in Fig. 1. Sub-
scripts 1 and 2 at D correspond to the quantities relating to the melt and crystal, respectively. The temperature distri-
bution in regions D1 and D2, which include the melt of the meniscus and crystal, is described by the heat-conduction
equation

∆Ti − ζi (Vi, ∇Ti) = 0 ,   (x, y) 8 Di ,   ζi = 
ρici

ki
 ,   i = 1, 2 , (1)

where V1 = (u1, v1) is the field of velocities in the melt of the meniscus and V2 = (0, V0) is the speed of pulling a
crystal.
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At the interphase boundary H(x), the Stefan condition and the condition of temperature continuity are to be
satisfied:

k2 (n, ∇T2) − k1 (n, ∇T1) = ρ2V0∆Hf (1 + Hx
 ′

2

)1
 ⁄ 2 , (2)

T1 [x, H (x)] = T2 [x, H (x)] = Tm ,   − h1 ≤ x ≤ h2 ,   y = H (x) . (3)

For the two side surfaces of the exterior strips, the heat transfer between the melt, crystal, and environment at tem-
perature Ten(y), which depends only on the height, is effected by convection and radiation:

− ki 
∂Ti

∂n
 = ηi (Ti − Ten) + σεi (Ti

 4
 − Ten

 4 ) . (4)

The equations that describe radiation heat transfer between the side surfaces of the inner strips will be defined below.
On the operating surface of the shaper and at the end of the crystal the following temperatures are assigned:

T1Γ1

 = Tf + 
x

cos β
 (Ten − Tf) ,  T2 (x, l) = T2

 0
 (x) ,   − h1 ≤ x ≤ h2 . (5)

Temperature T1 decreases linearly from Tf to Ten on Γ1, it is constant on Γ2, equal to Ten, and increases linearly from
Ten to Tf. The profile curve of the meniscus f(y) satisfies the Laplace equation and boundary conditions:

ρ2g (y + Heff) = σliq,g 
d

dy
 




df ⁄ dy

(1 + (df ⁄ dy)2)1
 ⁄ 2




 , (6)

f (0) = a ,   − 
df
dy



y=H(h2)

 = tan ε0 . (7)

The field of the distribution of velocities V1 = (u1, v1) in the melt satisfies the Navier–Stokes equation:

µ∆V1 + ρ1 (V1, ∇) V1 = ∇P + F ,   F = (0, − ρ1g) , (8)

Fig. 1. General scheme of the group process of growing strips by the Stepanov
method. Dots denote inner crystals.
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div V1 = 0 . (9)

Equation (9) allows one to introduce the stream function ψ conventionally. The behavior of the melt flow will be de-
scribed in what follows in terms of this function. The boundary of region D1 consists of six parts (Γi, i = 1, ..., 6) on
which boundary conditions are assigned in conformity with the conditions of the melt flow. At the interphase bound-
ary y = H(x) for boundary Γ2 we have

V1n = V0 1 + (Hx
 ′)2

1 ⁄ 2
 ,   V1τ = 0 . (10)

At boundaries Γ4 and Γ6, corresponding to the free surface of the melt, the normal velocity component is equal to
zero:

V1n = 0 ,   [(ττ, D
t
V1), n] = 0 ,   x = f (y) . (11)

At boundaries Γ1, Γ3, and Γ2, which correspond to the operating surface of the shaper and capillary exit, the following
conditions are satisfied:

u1 = 0 ,   v1 = 0 ,   (x, y) 8 Γ1 2 Γ3 ,   u1 = 0 ,   v1 = AV0 

1 − 



x
d0





 2



 ,   (x, y) 8 Γ2 . (12)

The constant A entering into Eq. (12) is determined from the condition of equality of the melt fluxes through the cap-
illary channel (boundary Γ2) and through the crystallization front (boundary Γ5):

A = 
3

4d0
 ∫ 
−b

b


1 + H

 ′
2

 (x)


 dx . (13)

We assume that the side surfaces of all the strips are diffusely gray. This means that part of the radiation flux
qi,k(rk) is reflected by the side surface of the strip in all directions. The net radiation flux for the surface will be writ-
ten as

qk (rk) = q0,k (rk) − qi,k (rk) ,   k = 1, 2 , (14)

where subscripts 1 and 2 denote the surfaces of the strips located opposite each other.
In the case of radiation heat transfer between two parallel, diffusely gray surfaces, the effective radiation flux

q0,k(rk) is the sum of the fluxes of self-radiation and reflected radiation, and it is described by the system of integral
equations [2]

q0,k (rk) = εkσTk
 4

 (rk) + (1 − εk) qi,k (rk) , (15)

q0,1 (y) − (1 − ε) 1
2

 ∫ 
0

L

q0,2 (x) b
2

[(x − y)2 + b
2
]
3 ⁄ 2

 dx = σ εT1
 4

 (y) + (1 − ε) Tr
 4
 , (16)

q0,2 (y) − (1 − ε) 1
2

 ∫ 
0

L

q0,1 (x) b
2

[(x − y)2 + b
2
]
3 ⁄ 2

 dx = σ εT2
 4

 (y) + (1 − ε) Tr
 4
 , (17)

where
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Tr
 4

 = Ts
 4

 
1
2

 

1 − 

y

√y2 + b2



 ;   b = d + 2a − h1

(2)
 − h2

(1)
 .

By solving this system of equations, we find the values of q0,1 and q0,2 and then find the distributions of the fluxes
of net radiations q1 and q2:

qk (y) = 
ε

1 − ε
 σTk

 4
 (y) − q0,k (y) ,

(18)

whereas, when using the incident fluxes qi,k, we obtain

qk (y) = ε σTk
 4

 (y) − qi,k (y) = εσ σTk
 4

 − Tenk
 4 

 , (19)

where

Tenk = 
4
√qi,k

 ⁄ σ  ,   k = 1, 2 , (20)

i.e., we obtain a radiation law similar to (4), only with other temperatures of surrounding media Tenk. Thus, for the
inner strips the heat-transfer law will be presented in the form of expression (4) if we assume that Ten = Tenk.

The distribution of the impurity concentration in the melt is described by the equation

D° ∆C − V∇C = 0 (21)

and boundary conditions

∂C
∂y

 = 0 ,   (x, y) 8 Γ1 2 Γ3 ,   C = C0 ,   (x, y) 8 Γ2 ,   
∂C

∂n
 = 0 ,   (x, y) 8 Γ4 2 Γ6 ,

− D°  
∂C

∂n
 = V0 (k0 − 1) C ,   (x, y) 8 Γ5 .

The solution of the problem in the given formulation by the method of finite elements is given in [3–5].
Results of Numerical Analysis. Numerical calculations showed that the bevel angle of the operating surface

of a shaper substantially influences such characteristics of growth as the shape and position of the crystallization front,
the hydrodynamics of the melt, and distribution of impurity concentrations in the melt meniscus.

Fig. 2. Position and shape of crystallization fronts (a, b, and c for the first,
second, and third crystals, respectively) at bevel angles of the operating edge
of the shapers of: 60o (1); 45o (2); 30o (3); 20o (4); 5o (5).
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We considered a packet consisting of six strips (N = 6), with a distance between the shapers of 0.25 cm for
bevel angles 5o, 20o, 30o, 45o, and 60o. The crystallization fronts obtained are shown in Fig. 2, from which it is seen
that with increase in the bevel angle the crystallization front descends approximately from 0.18 to 0.12 mm on the
first (exterior) strip and from 0.235 to 0.175 mm on the second and third strips. It should be noted that in all strips
of the packet the difference in the shape of the front from a plane one is most evident at larger angles.

Next, we investigated the case where the distance between the first and second strips was 1 cm, with the re-
maining distances being equal as before to 0.25 cm. As a result, a decrease in the height of the menisci in all of the
internal crystals was noted: on average by about 0.05 mm and by 0.1 mm on the first and last strips. No appreciable
changes in the shape of the front were noticed.

The bevel angle of the operating edge of a shaper appreciably influences the hydrodynamics of the melt. In-
deed, with increase in the bevel angle the region of melt flow becomes larger. The jet flow escaping from the capil-
lary near the crystallization front can be not so appreciable if the bevel angle is large enough. Figure 3 vividly
demonstrates that the flow becomes more uniform in the region located far from the capillary exit, which, of course,
must influence the behavior of the impurity concentration.

Fig. 3. Hydrodynamics of the melt.

Fig. 4. Concentrations of impurities at the crystallization front (bevel angles of
the operating edge of shapers: a) 5o; b) 30o; c) 45o); 1) first crystal; 2) second
crystal; 3) third crystal.
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Especially important is the behavior of the impurity at the crystallization front, since precisely this determines
its role in the crystal (Fig. 4). The impurity is distributed most nonuniformly in the first crystal. The second and third
crystals are rather close in the character of impurity behavior, and the values of the impurity concentration along the
crystallization front increase substantially with the bevel angle. In the central crystals, at a large bevel angle, the values
of the impurity concentration at the center of the crystals may be higher than on the edges. This behavior of concen-
trations is explained by the different height of the menisci of the melt and by the hydrodynamics of the latter.

Thus, we have considered a mathematical model for calculating the distributions of temperature and concen-
trations of impurity in the process of growing sapphire strips by the Stepanov group method depending on the bevel
angle of the operating surfaces of shapers. Based on mathematical simulation, different values of technological parame-
ters have been analyzed to optimize the process of growing. It has been established that reduction of the distance be-
tween shapers leads to a decrease in the difference between the temperature distributions in the strips. It can also be
decreased by using shields that emulsify the exterior strips. The temperature of the operating surfaces of shapers must
not decrease to avoid a sharp increase in the impurity concentrations. The decrease in the temperature can be control-
led by observing the height of the meniscus of measuring the signal from the crystal weight sensor. An increase in the
bevel angle of the operating surfaces of the shapers leads to a decrease in the height of the meniscus and, conse-
quently, to a greater stability of the process of growth.

NOTATION

a, half-thickness of a shaper, mm; A, constant determined from the condition of equality of the melt flows
through the capillary channel and crystallization front; b, half-thickness of crystalline strips, mm; c, heat capacity; J/K;
C, impurity concentration, mm−3; d, distance between adjacent shapers, mm; d0, half-thickness of the capillary channel,
mm; D, computational domain; D

°
, diffusion coefficient, m−2; Dt, deformation tensor; f, profile curve of the meniscus,

m; F, external specific force, N/m3; g, free fall acceleration, m/sec2; H, curve of crystallization front, m; Heff, distance
between the melt surface and the meniscus base line, mm; h2

(1) and h1
(2), values reckoned from the y axis to the side

adjacent surfaces of neighboring strips; ki, thermal conductivity coefficient, J/(K⋅m⋅sec); k0, coefficient of impurity dis-
tribution; l, running length of crystals, m; L, length of the packet strips, mm; N, number of strips in a packet; n, unit
normal vector to the boundary of the computational domain, m; P, outer pressure, Pa; q, radiation flux, J/(m2⋅sec); T,
temperature, K; Tr, temperature expressed in terms of Ts, K; Ts, known temperature of the surface of the common base
between two neighboring shapers, K; u1, component of the melt-velocity normal to the boundary, m/sec; v, melt-ve-
locity component tangent to the boundary, m/sec; V0, speed of pulling of crystals, m/sec; β, bevel angle of shapers,
deg; Γ, boundary of the region; ∆Hf, specific heat of crystallization, J/kg; εi, emissivity; ε0, growth angle, deg; ζ, heat-
transfer coefficient, W/(m2⋅K); ηi, heat-conduction coefficient, J/(K⋅m2⋅sec); µ, dynamic viscosity of the melt, Pa⋅sec;
ρi, density, kg/m3; σ, Stefan–Boltzmann constant, W/(m2⋅K4); σliq,g, coefficient of surface tension of the melt, J/m2;
τ, unit tangent vector to the profiled curve of the meniscus, m; ψ, stream function of the melt. Subscripts: en, envi-
ronment; eff, effective quantity; f, shaper surface; i, melt (1) or crystal (2); k, surfaces of neighboring strips; liq,g,
value in transition from a liquid to a gaseous medium; m, melting; r, shaper (radiative); s, common base between
shapers; t, tensor.
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